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The asymptotic results (Kumaran 1998b) obtained for Λ ∼ 1 for the flow in a flexible
tube are extended to the limit Λ � 1 using a numerical scheme, where Λ is the
dimensionless parameter Re1/3(G/ρV 2), Re = (ρVR/η) is the Reynolds number, ρ
and η are the density and viscosity of the fluid, R is the tube radius and G is the
shear modulus of the wall material. The results of this calculation indicate that the
least-damped mode becomes unstable when Λ decreases below a transition value at a
fixed Reynolds number, or when the Reynolds number increases beyond a transition
value at a fixed Λ. The Reynolds number at which there is a transition from stable
to unstable perturbations for this mode is determined as a function of the parameter
Σ = (ρGR2/η2), the scaled wavenumber of the perturbations kR, the ratio of radii of
the wall and fluid H and the ratio of viscosities of the wall material and the fluid
ηr . For ηr = 0, the Reynolds number at which there is a transition from stable to
unstable perturbations decreases proportional to Σ1/2 in the limit Σ � 1, and the
neutral stability curves have a rather complex behaviour in the intermediate regime
with the possibility of turning points and isolated domains of instability. In the limit
Σ � 1, the Reynolds number at which there is a transition from stable to unstable
perturbations increases proportional to Σα, where α is between 0.7 and 0.75. An
increase in the ratio of viscosities ηr has a complex effect on the Reynolds number for
neutrally stable modes, and it is observed that there is a maximum ratio of viscosities
at specified values of H at which neutrally stable modes exist; when the ratio of
viscosities is greater than this maximum value, perturbations are always stable.

1. Introduction
Many biological systems and biotechnology processes involve flow through flexible

tubes and channels. The flow of blood and other fluids in the body takes place
through flexible tubes, and the separation and purification processes in pharmaceutical
industries often involve flow in tubes and channels made up of polymer matrices and
membranes. These have been analysed using models similar to those for the flow in a
rigid tube, but some experiments conducted by Krindel & Silberberg (1979) suggest
that the characteristics of the flow in a flexible tube could be very different. The drag
force in a flexible tube is much larger than that in a rigid tube of the same radius
at Reynolds numbers where the flow in a rigid tube is laminar, and the anomalous
drag force could not be accounted for by changes in the radius of the tube. This
led them to conclude that the Reynolds number at which the flow changes from the
laminar to turbulent regime is much smaller than the transition Reynolds number
Re = 2300–4000 for a rigid tube, and the transition Reynolds number is influenced
by the elasticity of the surface. It is useful, from a technological viewpoint, to develop
a fundamental understanding of the factors affecting this transition, since this would
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help in optimizing the design of biotechnological processes. In applications where it is
important to have high mass or heat transfer rates, it would be necessary to operate
the system in the turbulent regime where the transfer rates are up to three orders
of magnitudes higher than that in the laminar regime. In processes where low drag
forces are desirable, the system could be operated in the laminar regime.

At the point of transition from the laminar to turbulent regime, the laminar
flow becomes unstable to small perturbations, and so it is necessary to study the
stability characteristics of the flow to predict the Reynolds number at which there
is a transition from stable to unstable modes. The stability of the ‘viscous modes’
in the flow through a flexible tube in the low Reynolds number regime, where
Re ≡ (ρVR/η) � 1, and (Vη/GR) ∼ 1 was analysed by Kumaran (1995a). Here, ρ
and η are the density and viscosity of the fluid, R is the radius of the tube, V is
the characteristic fluid velocity and G is the shear modulus of the wall material. In
this regime, there is a balance between the viscous forces in the fluid and the elastic
forces in the wall. It was observed that the viscous modes become unstable when the
fluid velocity is increased beyond a critical value. The continuation of the viscous
modes into the intermediate Reynolds number regime was analysed using a numerical
solution scheme by Kumaran (1998a). The stability of the ‘inviscid modes’ in the high
Reynolds number regime Re � 1 and (ρV 2/G) ∼ 1 was analysed using asymptotic
techniques by Kumaran (1995b). In this case, there is a balance between the inertial
forces in the fluid and the elastic forces in the wall, and the analysis indicated that the
inviscid modes are always stable. The stability of ‘wall modes’ in the high Reynolds
number regime Re � 1 and Re1/3(G/ρV 2) ∼ 1, where the vorticity is confined to a
small region of thickness Re−1/3, was studied using asymptotic analysis in Kumaran
(1998b). The results of that analysis showed that the wall modes are always stable in
the limit of high Reynolds number. Here, the asymptotic results obtained in the limit
of high Reynolds number are extended to the intermediate Reynolds number regime
using numerical analysis, and it is found that the wall modes do become unstable in
this regime.

Asymptotic studies of the flow in a rigid tube (Gill 1965; Corcos & Sellars 1959)
have revealed that there are two types of high Reynolds number modes in a rigid tube
where the vorticity is confined to thin regions near the centre of the tube or at the
wall. The vorticity of the ‘centre modes’ is confined to a region of thickness O(Re−1/4)
at the centre of the tube, and the decay rate of these modes is O(Re−1/2) smaller than
the fluid strain rate. The vorticity of the ‘wall modes’ is confined to a layer of thickness
O(Re−1/3) at the wall, and the damping rate of these modes is O(Re−1/3) smaller than
the fluid strain rate. Both these modes are always stable. There have also been many
numerical studies of the stability of parabolic pipe flow to axisymmetric and non-
axisymmetric disturbances at finite Reynolds number (Davey & Drazin 1969; Garg
& Rouleau 1972; Salwen & Grosch 1972). These have all concluded that the flow is
stable to small disturbances at all Reynolds numbers, and there now appears to be
a consensus that the flow in a rigid tube is stable to small-amplitude perturbations,
but the observed instability may be due to perturbations of finite amplitude. This is
supported by evidence that the flow in a tube can be maintained in the laminar state
at Reynolds numbers much higher than the transition Reynolds number of 2300 if
adequate precautions are taken to damp out vibrations in the system.

The stability characteristics of the wall modes were determined using asymptotic
analysis in an earlier study (Kumaran 1998b). The configuration and the coordinate
system used in the analysis are shown in figure 1. Perturbations of the form vi =
ṽi(r) exp (ikx+ st) and ui = ũi(r) exp (ikx+ st) were imposed, and the growth rate of
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Figure 2. Solutions for the scaled growth rate s∗ = Re1/3(sR/V ) obtained in the asymptotic analysis
of Kumaran (1998b). The circles are the roots in the limit Λ∗ → ∞, and the squares are the roots
in the limit Λ∗ = 0.

these perturbations s was determined as a function of the wavenumber k and the
material and flow parameters. Since the vorticity of the wall modes is confined to a
thin region near the wall of the tube, the wall elasticity has an effect on these modes.
A scaling analysis showed that the elastic stresses in the wall affect the damping
of the wall modes when the dimensionless number Λ ≡ ε−1/3(G/ρV 2)1/2 ∼ 1, where
ε ≡ Re−1. It was shown, using scaling arguments, that the inertial and viscous stresses
are of the same magnitude in the wall layer, and the parameter Λ represents the
ratio of the elastic stresses in the wall material and the inertial (or viscous) stresses
in the fluid. The velocity and stress fields were expanded in the small parameter ε,
and an asymptotic analysis is used to determine the growth rate of the wall modes.
In the regime Λ ∼ 1, the elastic stress is large compared to the inertial stress in the
wall material, and the wall admittance is only a function of the ratio of radii of the
wall and the fluid H and the scaled wavenumber kR of the perturbations. There are
multiple solutions for the scaled growth rate, s∗ = Re−1/3(sR/V ), which are shown in
the complex plane in figure 2. In the limit Λ→∞, which corresponds to a rigid tube,
the solutions (circles in figure 2) reported previously for a rigid tube are recovered.
In the limit Λ → 0, which is a wall with very small elasticity, the solutions converge
to the squares shown in figure 2, and there is a smooth transition between these two
in the intermediate regime. In addition, there is one mode in a flexible tube whose
growth rate does not converge to any of the rigid tube modes, but which has a
diverging frequency in the limit Λ→∞. This is the least-stable wall mode in a flexible
tube, and its decay rate decreases proportional to Λ−1/2 in the limit Λ→∞.

In § 2, the stability analysis for the least-stable wall mode is extended to the regime
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Λ � 1 using a numerical scheme. It is observed that this mode becomes unstable
when Λ is decreased below a transition value at a fixed Reynolds number, or when
the Reynolds number is increased beyond a transition value at a fixed value of Λ.
The neutral stability curves for this unstable mode are obtained using a continuation
scheme, and the Reynolds number at which there is a transition from stable to unstable
modes is determined as a function of the dimensionless parameter Σ = (ρGR2/η2),
the ratio of radii H , the wavenumber kR, and the parameter ηr which is the ratio of
viscosities of the wall material and the fluid.

2. Numerical analysis
In the present section, a numerical calculation used to determine the stability

characteristics in the regime Λ � 1, where the asymptotic analysis is not expected
to provide accurate results. Here, the parameter Λ is the ratio of the elastic stresses
in the wall and the inertial or viscous stresses in the fluid. The numerical scheme,
which is identical to that used in Kumaran (1998a), is briefly outlined here. The
conservation equations for the velocity field in the fluid and the displacement field in
the flexible wall are reduced to two fourth-order differential equations. There are two
linearly independent solutions for the velocity field in the fluid which are consistent
with the symmetry conditions at the centre of the tube. One of these is determined
analytically, while the other is calculated using a fourth-order Runge–Kutta scheme
with adaptive step size control. Since only one solution is determined numerically,
an orthogonalization procedure is not necessary. There are two linearly independent
solutions for the displacement field in the wall material which are consistent with
the zero displacement conditions at r = H . Both of these are determined using
a fourth-order Runge–Kutta technique using adaptive step size control, and an
orthogonalization procedure is employed. The solutions for the fluid velocity and
wall displacement fields at the interface are inserted into the boundary conditions
to obtain the characteristic matrix. The characteristic equation, obtained by setting
the determinant of this matrix to zero, is solved to determine the growth rate. The
characteristic equation is a nonlinear equation, so it is not possible to determine
the solutions analytically. In Kumaran (1998a), the solutions for the growth rate in
the low Reynolds number regime were used as a starting guess, and an iterative
Newton–Raphson scheme was used to obtain the growth rate at non-zero values of
the Reynolds number. In the present analysis, the same iterative scheme is used, but
the solution for the growth rate obtained from the asymptotic analysis for the wall
modes (Kumaran 1998b) is used as the starting guess.

In Kumaran (1998a), the consistency of the numerical scheme was verified in
three ways. In the limits of low and high Reynolds number, it was found that
the numerical results were in agreement with the low and high Reynolds number
analyses of Kumaran (1995a, b). In addition, the numerical results were compared
with the results of Davey & Drazin (1969) for the Poiseuille flow in a rigid tube,
and it was shown that the results of the numerical scheme converge to those of
Davey & Drazin in the limit where G → ∞ (infinite elasticity) and in the limit
H → 0 where the thickness of the wall is small compared with the radius of
the tube. In the present section, the numerical results are compared with the high
Reynolds number asymptotic analysis for the wall modes given in Kumaran (1998b).
The scaled growth rate in the asymptotic analysis, s∗ = Re1/3(sR/V ), depends on a
dimensionless parameter Λ∗ = (2kR)1/3ΛC(kR,H)/4, where C(kR,H) is the inverse
of the admittance, kR is a dimensionless wavenumber and Λ = Re1/3(G/ρV 2). The
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Figure 3. Comparison of the numerical s∗n and asymptotic s∗a results for (a) the real part of the
growth rate s∗R , (b) the imaginary part of the growth rate s∗I , (c) the ratio |s∗n − s∗a|/|s∗n| for the wall
mode with the second lowest damping rate. In (a) and (b), the solid lines are the numerical results
and the broken lines are the asymptotic results. In (c), the broken line has a slope of (−1/3). The
dimensionless wavenumber kR = 1, the ratio of radii H = 2, and Λ∗ = 2.4172Λ for these values of
H and kR. The parameter values are ◦, Λ = 0.1; 4, Λ = 0.3; 2, Λ = 1.0; �, Λ = 1.0.
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parameter Λ∗ is proportional to the normal stress in the wall material (scaled by ρV 2)
and the normal displacement (scaled by R). The asymptotic analysis indicates that
the wall mode with the lowest damping rate has a diverging frequency for Λ∗ � 1;
the numerical results for this mode are examined a little later. Here, the wall mode
with the second lowest damping rate, which has a finite frequency at all values of Λ∗,
is chosen for the validation of the numerical code. A comparison for the real and
imaginary parts of the numerically evaluated growth

rate s∗n and the asymptotic value of the growth rate s∗a in the high Reynolds number
limit are given in figures 3(a) and 3(b). Here, the wavenumber kR = 1, and four
different values of the dimensionless parameter Λ are considered. It is seen that there
is very good agreement between the numerical and analytical solutions at Reynolds
numbers between 1000 and 10 000, even though Re−1/3 is not very small at these values
of Re. It is interesting to note that a similar observation was made by Davey & Drazin
(1969) when they compared their numerical results for wall modes in a rigid tube with
the asymptotic results of Corcos & Sellars (1959). The relative difference between the
numerical and asymptotic growth rates, (|s∗n − s∗a|/|s∗n|), is shown in figure 3(c). Here,
it can be seen that the asymptotic solution is in error by O(Re−1/3), in agreement
with the prediction of the asymptotic analysis. Consequently, the present numerical
scheme is consistent with the asymptotic analysis in Kumaran (1998b).

The variation in the real and imaginary parts of the growth rate for the least-stable
mode, which has a diverging frequency in the rigid tube limit, is shown in figures 4(a)
and 4(b). The broken line shows the asymptotic results of Kumaran (1998b) for
kR = 1, and different values of Λ∗, while the solid lines show the results of the
numerical calculation for H = 2, ηr = 0 and for different values of the Reynolds
number. It can be seen that there is good agreement between the asymptotic and
numerical results for Λ∗ ∼ 1, but the agreement is poor for Λ∗ � 1 and Λ∗ � 1. There
are significant differences between the asymptotic and numerical results for Λ∗ � 1
because the frequency of oscillations becomes large in this regime, and the inertial
effects in the wall, which have been neglected in the asymptotic analysis are no longer
negligible. In addition, it is also observed that the growth rate deviates significantly
from the asymptotic value for Λ∗ � 1, and the perturbations become unstable in the
range 0.01 6 Λ∗ 6 0.1 for Reynolds numbers from 1000 to 10 000. The stability of
this mode at intermediate Reynolds number is analysed in the present section using
the numerical scheme discussed above.

The neutral stability curves for the least-stable wall mode are determined using
an analytic continuation technique, and the parameter values for the neutrally stable
perturbations obtained as discussed above are used as the starting guess. The Reynolds
number for the neutrally stable modes is determined as a function of the dimensionless
parameter Σ = (ρGR2/η2). The parameter Σ is chosen as the independent variable
because it is independent of the fluid velocity, and is dependent only on the fluid
and wall parameters, and the results are expressed in terms of the parameter Σ to
facilitate comparison with the previous results of Kumaran (1998a). The Reynolds
number for neutrally stable modes depends on the wavenumber kR, the ratio of wall
and fluid radii H and the ratio of viscosities ηr . In this section, the results for ηr = 0
are first analysed, and then the effect of variation in ηr on the neutrally stable modes
is determined.

2.1. Results for ηr = 0

The Reynolds number for neutrally stable modes is shown as a function of Σ for
1 6 Σ 6 105 for different values of H and kR in figures 5 and 6. In the limit



Stability of wall modes in a flexible tube 7

0.2

0

sR
*

(a)

10–2

15

12

–3

0

sI
*

(b)

9

6

3

K*

–0.2

–0.4

–0.6

–0.8

–1.0
10–1 100 101 102

10–2 10–1 100 101 102

Figure 4. Comparison of the asymptotic and numerical results for (a) the real part, (b) the imaginary
part of the growth rate for the wall mode with the lowest damping rate at wavenumber kR = 1,
ratio of radii H = 2 and ratio of viscosities ηr = 0. The broken line shows the asymptotic results,
while the parameter values for the numerical results are ◦, Re = 103; 4, Re = 5 × 103 and
2, Re = 104. The dotted line in (a) represents s∗R = 0.

Σ � 1, the Reynolds number decreases proportional to Σ1/2. This is in contrast to the
viscous modes (Kumaran 1995a), where the Reynolds number decreases proportional
to Σ, indicating that the neutrally stable modes obtained in the present analysis
are distinct from the neutrally stable wall modes obtained in Kumaran (1995a).
Figure 5 shows that neutral stability curves could have a rather complex behaviour
in the intermediate Reynolds number regime for certain values of kR and H , with the
possibility of turning points and isolated domains of unstable perturbations. However,
for other values of kR and H , the neutral curves are monotonic, and do not show
isolated regions of instability, as illustrated in figure 6.

The critical Reynolds number, which is the minimum Reynolds number at which
there are neutrally stable modes for a specified value of H , is shown as a function
of Σ in figure 7(a). The critical Reynolds number increases with an increase in Σ,
and has a behaviour of the type Σα in the limit Σ � 1, where α varies between 0.7
and 0.75. This behaviour is similar to that of the neutral stability curves analysed in
Kumaran (1998a) for the continuation of the viscous modes. Moreover, it is observed
that the critical Reynolds number exhibits the possibility of discontinuities. This is
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Figure 6. Neutral stability curves in the (Σ, Re)-plane for the wall mode with the lowest damping
rate. The parameter values are ◦, H = 1.1, kR = 1.0; 4, H = 1.2, kR = 1.0; 2, H = 5.0, kR = 1.0;
�, H = 10.0, kR = 1.0.

due to the presence of turning points and isolated domains of instability in the neutral
stability curves in the (Re, Σ)-plane discussed earlier. A comparison of the critical
Reynolds number for the wall modes analysed here and the viscous modes that were
analysed in Kumaran (1998) is also shown in figure 7(a). It is seen that at H = 10,
the viscous modes have a lower critical Reynolds number for 1 6 Σ 6 105, but for



Stability of wall modes in a flexible tube 9

R

104

Rec

103 104

103

102

101

102101100 105

100

kcR

103 104102101100 105

100

10–2

–sIcg
G

103 104

101

101 105

100

(a)

(b)

(c)

5

2

5

102100

10–1

Figure 7. The critical Reynolds number (a), non-dimensional wavenumber of the neutrally stable
mode (b) and non-dimensional frequency of the neutrally stable mode (c) as a function of Σ.
◦, H = 1.2; 4, H = 1.5; 2, H = 2.0; �, H = 5.0; ∇, H = 10.0. In (a), the solid lines give the critical
Reynolds number for the wall modes and the broken lines give the critical Reynolds number for
the viscous modes.

H = 2 and H = 1.2, the wall modes have a lower critical Reynolds number for
102 6 Σ 6 105. The discontinuity in the critical Reynolds number for H = 1.2 is
due to the disappearance of isolated domains of instability (shown in figure 5b, d) at
the value of Σ where the curve is discontinuous. The wavenumber of the neutrally
stable mode, scaled by the inverse of the tube radius, is shown as a function of Σ
in figure 7(b), and the frequency of the neutrally stable mode scaled by (G/η) is
shown as a function of Σ in figure 7(c). It is useful to note that the frequency of the
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Figure 9. The maximum value of ratio of viscosities η̂r at which there are neutrally stable modes
at a specific wavenumber as a function of the scaled wavenumber (kR) at H = 2. ◦, Σ = 10;
4, Σ = 102; 2, Σ = 103; �, Σ = 104.

neutrally stable mode is negative, indicating that the phase velocity of the neutrally
stable perturbations is always opposite to the direction of flow.

2.2. Results for ηr > 0

The effect of variation in the ratio of viscosities ηr on the Reynolds number of neutrally
stable modes is shown in figure 8. It is observed that as the ratio of viscosities for
the neutrally stable modes increases, the Reynolds number for transiton from stable
to unstable perturbations increases from ηr = 0, undergoes a turning point and then
decreases to zero at a finite Reynolds number. This behaviour was observed at all
values of H , Σ and kR studied here, and the more complex behaviour reported in
Kumaran (1998a) for the viscous modes is not observed in the present case. Figure 8
indicates that there is a finite region in the (Re, ηr)-plane where there are unstable
modes, and there is a maximum ratio of viscosities η̂r for a specified H and kR where
neutrally stable modes can exist. This maximum ratio of viscosities is shown as a
function of the scaled wavenumber (kR) in figure 9 for H = 2 and for different values
of Σ. It is observed that η̂r shows a maximum at kR = 0, and decreases as kR is
increased. This trend was observed for all the values of Σ analysed here.
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The maximum of the η̂r, (kR) curve at kR = 0, denoted ηrm, represents the maximum
value of the ratio of viscosities at which unstable modes can be present at any
wavenumber for a specified value of H . Therefore, ηrm represents a global stability
limit, and perturbations are always stable for ηr > ηrm. This maximum value is shown
as a function of Σ for different values of H in figure 10(a). It is observed that ηrm
tends to increase as Σ increases, though there is a decrease when Σ increases beyond
104. The numerical calculations indicate that the critical Reynolds number Rem of
the neutrally stable modes at ηr = ηrm increases proportional to (kR)−1 in the limit
(kR) → 0. The product (kR)Rem is shown as a function of Σ in figure 10(b). It is
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observed that the critical Reynolds number increases with Σ, but the dependence
on H is non-monotonic. The numerical calculations indicate that this is due to the
presence of turning points and isolated domains of instability with a much lower
critical Reynolds number for H between 1.5 and 3.0, and the absence of these for H
less than 1.2 and greater than 5.0. The non-dimensional frequency of the neutrally
stable modes at ηr = ηrm, shown as a function of Σ in figure 10(c), shows a monotonic
decrease as Σ is increased.

3. Discussion and conclusions
The stability of wall modes in the limit of high Reynolds number was earlier

determined using asymptotic analysis (Kumaran 1998b) for the regime Λ∗ ∼ 1, where
Λ∗ ≡ (kR)1/3ΛC(kR,H) is a dimensionless parameter in the asymptotic analysis,
Λ ≡ Re1/3(G/ρV 2) and C(kR,H) is the inverse of the wall admittance. The results
have been extended to the intermediate Reynolds number regime using numerical
calculations in the present study. The variation in the decay rate of the least-stable
wall mode in the regime Λ∗ � 1 was determined numerically, and it was found that
this mode becomes unstable when Λ∗ decreases below a critical value at a fixed
Reynolds number, or when the Reynolds number increases beyond a critical value at
a fixed Λ∗. The neutral stability curves for this mode were determined as a function
of the parameter Σ = (ρGR2/η2), the wavenumber kR, ratio of radii H , and the ratio
of viscosities of the wall and the fluid ηr . The critical Reynolds number increases
proportional to Σ1/2 in the limit Σ � 1, and increases proportional to Σα, where
0.7 6 α 6 0.75, in the limit Σ � 1. In the intermediate regime, the neutral stability
curves have a complex behaviour with the possibility of turning points and isolated
regions of unstable modes. The dependence of the Reynolds number of neutrally
stable modes on the ratio of viscosities ηr is complex, and it is found that the
Reynolds number first increases as ηr is increased from zero and undergoes a turning
point, and any further increase in Reynolds number leads to a decrease in the ratio
of viscosities for the neutral modes. At a specified value of Σ, there is the possibility
of neutrally stable modes only if the ratio of viscosities is less than a maximum value
ηrm; perturbations are always stable for ηr > ηrm.

An energy balance analysis similar to that of Kumaran (1995b) can be used to
understand the physical mechanism leading to the instability. A balance for the total
energy of the fluctuations can be written as

dE
dt

= C+S−Df −Dw, (3.1)

where E is the energy of the fluctuations, C is the rate of transfer of energy from
the mean flow to the fluctuations due to the convective terms in the momentum
equation, S is the transfer of energy due to the work done by the mean flow at the
interface, and Df and Dw are the rates of dissipation of energy due to viscous effects
in the fluid and the wall. The convective transport of energy C is zero in the leading
approximation because the tangential and normal velocities in the fluid are out of
phase by an angle of (π/2) (Kumaran 1995b). Thus, there is an instability when the
energy transfer rate S is larger than the rate of dissipation Df + Dw . The rate of
transport due to the work done by the mean flow at the interface is (Kumaran 1995b)

S = 2πR

∫
dx τxr(vx − ∂tux)|r=R. (3.2)
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The rate of dissipation of energy in the fluid is

Df = 2πRη

∫
dx

∫ R

0

r dr τxr(∂rvx + ∂xvr). (3.3)

From the scaling of the spatial and velocity coordinates in equations in Kumaran
(1998b), it can be inferred that the tangential velocity vx is large compared to the
normal velocity in the wall layer. In addition, the tangential velocity vx is also large
compared to the rate of change of normal displacement ∂tux in (3.2). With these
simplifications, S can be expressed in terms of the Fourier components of the scaled
velocities ṽ∗r and ṽ∗x:

S = (Re1/32πRηV 2) exp [(s∗ + s̄∗)]

∫
dk[ ¯̃v∗xdz∗ ṽ

∗
x + ṽ∗xdz∗ ¯̃v∗x]|r∗=1 (3.4)

where the overbar denotes the complex conjugate, ṽ∗x = ṽx/V , ṽ∗r = Re1/3ṽr/V , s∗ =
Re1/3(sR/V ) and z∗ = Re1/3(1− r). The rate of dissipation of energy in the fluid can
be expressed in a similar fashion:

Df = (Re1/32πRηV 2) exp [(s∗ + s̄∗)]

∫
dk

∫ ∞
0

dz∗[2(dz∗ ṽ
∗
x)(dz∗ ¯̃v∗x)]. (3.5)

In the above expression, the lower limit z∗ = 0 corresponds to the wall of the tube,
while the upper limit z∗ = Re1/3 at the centre of the tube has been approximated by
z∗ = ∞ in the limit Re � 1. The difference S−Df reduces to

S−Df = (Re1/32πRηV 2) exp [(s∗ + s̄∗)]

∫
dk

∫ ∞
0

dz∗[( ¯̃v∗xd
2
z∗ ṽ
∗
x) + (ṽ∗xd

2
z∗

¯̃v∗x)]. (3.6)

For a non-dissipative wall (ηr = 0), a transition from stable to unstable modes could
be expected whenS−Df goes from negative to positive. Consequently, the instability
results when the transfer of energy from the mean flow to the fluctuations due to the
shear work done by the mean flow at the interface is greater than the dissipation of
energy due to viscous effects. This energy balance indicates that the present instability
is distinct from the Tollmien–Schlichting modes, because in the Tollmien–Schlichting
modes the instability is caused by the transport of energy from the mean flow to the
fluctuations in a viscous critical layer in the fluid of thickness Re−1/3 smaller than the
tube radius. The absence of this critical layer indicates that the present instability is
not a Tollmien–Schlichting instability.

The instability obtained in the present analysis is not a continuation of the wall
modes in a rigid tube, because the mode that becomes unstable corresponds to a
wall mode in a flexible tube which does not converge to any of the wall modes in a
rigid tube, but has a diverging frequency in the limit of a rigid tube. Consequently,
this instability cannot be classified as the continuation of a Tollmien–Schlichting
instability in a rigid tube, and it is appropriate to classify it as a flow-induced surface
instability which can exist only in the presence of wall flexibility, in the classification
of Carpenter & Garrad (1985). In the classification system developed by Benjamin
(1963), the wall modes come under the category of Class B modes. This is because
from figure 8 it is observed that an increase in the wall dissipation increases the
Reynolds number of neutrally stable modes. Moreover, from figure 5(a), it is seen
that the (Re, Σ)-curve could have three points where the flow could be neutrally
stable. As ηrm is increased, the lower branch moves upward indicating that an increase
in viscosity increases the Reynolds number at which the transition to unstable modes
takes place.
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The critical Reynolds number for the present instability is compared with those for
the continuation of the viscous modes (Kumaran 1998a) in the intermediate Reynolds
number regime in figure 7(a). It is observed that the critical Reynolds number for
the present instability is greater than that for the continuation of the viscous mode
for H = 10.0, but for H = 1.2 and H = 2.0, there are ranges of Σ where the
present instability has a lower critical Reynolds number than the continuation of
the viscous mode. This implies that at higher values of H where the wall thickness
is large compared to the tube radius, the continuation of the viscous mode is the
most unstable mode, while at lower values of H , the continuation of the wall mode
analysed here is more unstable over certain ranges of the parameter Σ. Moreover, the
critical Reynolds number is a non-monotonic function of H for certain values of Σ,
first decreasing and then increasing as H is increased. This is because it exhibits the
type of behaviour shown in figure 5 at lower values of H , where the neutral stability
curve is not monotonic but has turning points and sometimes isolated domains of
instability, where the Reynolds number for the transition from stable to unstable
modes for the lower branch is considerably lower than that for the upper branches
of the neutral stability curves. This feature is not observed at higher values of H ,
and consequently the critical Reynolds number could show an increase as H is
increased.

The Reynolds number for the neutrally stable modes has a complex dependence
on the ratio of viscosities ηr , as reported in the previous section. As the ratio of
viscosities is increased, the Reynolds number of neutral modes initially increases,
and then there is a turning point in the Re, ηr curve and a further increase in the
Reynolds number causes a decrease in the ratio of viscosities ηr . Moreover, the
ratio of viscosities decreases to ηr = 0 at a finite Reynolds number, indicating that
there is a finite region in the (ηr, Ren)-plane where the perturbations are unstable.
However, the more complex types of behaviour reported in Kumaran (1998a) for
the continuation of the viscous modes, where there is the possibility of the Reynolds
number of neutral modes decreasing as the ratio of viscosities is increased, are not
observed here. There is a maximum ratio of viscosities ηrm for a specified H at which
neutrally stable modes can exist; perturbations are always stable for ηr > ηrm. The
maximum ratio of viscosities varies between 0.01 and 1.0 for 1 6 Σ 6 104; this is of
the same magnitude as that reported for the continuation of the viscous modes in
Kumaran (1998a). The critical Reynolds number for the continuation of the viscous
modes was compared with the experimental results of Krindel & Silberberg (1979)
for the flow in a gel-walled tube in Kumaran (1998a), and it was reported that the
anomalous drag forces observed in that experiment could be due to an instability
that is a continuation of the viscous modes. The present analysis indicates that the
continuation of the viscous mode is more unstable than the continuation of the wall
mode in the regime 10 6 H 6 30, appropriate for the experiments of Krindel &
Silberberg, and so the continuation of the viscous mode is the most unstable mode
in this regime. However, for lower values of H , the continuation of the wall mode
could be more unstable, and the results of the present analysis would be relevant in
this regime.
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